解析几何笔记:向量的外积
目录向量的外积定义几何意义外积的运算规律计算向量的外积外积的坐标计算外积的坐标表示向量的混合积定义几何意义常用性质计算向量的混合积混合积的坐标计算三向量(或四点)共面条件参考
向量的外积
定义
定义1 2个向量\(\bm{a},\bm{b}\)的外积(记作\(\bm{a}\times \bm{b}\))仍然是一个向量,其长度规定为:
\[|\bm{a}\times \bm{b}|=|\bm{a}||\bm{b}|\sin<\bm{a},\bm{b}>
\]
方向规定(符合右手规则):与\(\bm{a}, \bm{b}\)均垂直,且向量\(\bm{a},\bm{b},\bm{a}\times\bm{b}\)形成向量系——右手四指从\(\bm{a}\)弯向\(\bm{b}\)(转角<π)时,拇指的指向就是\(\bm{a}\times\bm{b}\)的方向.
如果\(\bm{a},\bm{b}\)中有一个为0,则\(\bm{a}\times \bm{b}=0\).
推论1 \(\bm{a}\times\bm{b}=0\)的充要条件:\(\bm{a},\bm{b}\)共线.
证明:
\[a\times b = 0 \Leftrightarrow |a||b|\sin\braket{a,b}=0 \Leftrightarrow |a|=0,|b|=0或\sin\braket{a,b}=0\Leftrightarrow a,b共线
\]
几何意义
设\(\bm{a,b}\)是平面\(\pi_0\)上2个不共面向量. 当\(\bm{a},\bm{b}\)不共线时,\(|\bm{a}\times \bm{b}|\)表示以\(\bm{a},\bm{b}\)为邻边的平行四边形的面积.
\(\bm{a}\times \bm{b}\)的方向符合右手定则:右手四指从\(\bm{a}\)弯向\(\bm{b}\)(转角<π)时拇指的方向,就是\(\bm{a}\times \bm{b}\)的方向.
外积的运算规律
命题1 若向量\(\bm{a}\neq 0\),则\(\bm{a}\times\bm{b}=\bm{a}\times\bm{b_2}\),其中\(\bm{b_2}\)是\(\bm{b}\)沿方向\(\bm{a}\)的外射影.
注:外射影指\(\bm{b}\)在\(\bm{a}\)垂直方向的投影,模为\(|\bm{b}|\sin<\bm{a},\bm{b}>\).
证:\(\bm{b}=\bm{b_1}+\bm{b_2}\),其中\(\bm{b_1}//\bm{a},\bm{b_2}⊥\bm{a}\),而投影直角三角形中,\(\bm{b}|\sin<\bm{a},\bm{b}>\)
而
\[|\bm{a}\times\bm{b}|=|\bm{a}||\bm{b}|\sin<\bm{a},\bm{b}>=|\bm{a}||\bm{b_2}|=|\bm{a}\times\bm{b_2}|
\]
又\(\bm{a}\times\bm{b}\)与\(\bm{a}\times\bm{b_2}\)同向
∴\(\bm{a}\times\bm{b}=\bm{a}\times\bm{b_2}\).
命题2 设\(\bm{e}\)是单位向量,\(\bm{b}⊥\bm{e}\),则\(\bm{e}\times\bm{b}\)等于\(\bm{b}\)按右手螺旋规则绕\(\bm{e}\)旋转90°得到向量\(\bm{b}'\).
证明:
\(|\bm{e}\times\bm{b}|=|\bm{e}||\bm{b}|\sin<\bm{e},\bm{b}>=|\bm{b}|\)
∵\(\bm{b}'\)由\(\bm{b}\)旋转90°得到
∴\(|\bm{b}|=|\bm{b}'|=|\bm{e}\times \bm{b}|\),\(\bm{b'}⊥\bm{b}, \bm{b'}⊥\bm{e}\).
∴\(\bm{b'}//\bm{e}\times \bm{b}\)
又由上图知,\(\bm{b}', \bm{e}\times \bm{b}\)同向
∴\(\bm{b}'=\bm{e}\times\bm{b}\)
推论2 若\([O;\bm{e_1},\bm{e_1},\bm{e_2},\bm{e_3}]\)为右手直角坐标系,则有
\[\bm{e_1}\times\bm{e_2}=\bm{e_3},\bm{e_2}\times\bm{e_3}=\bm{e_1},\bm{e_3}\times\bm{e_1}=\bm{e_2}
\]
定理1 外积运算规律:对于任意向量\(\bm{a},\bm{b},\bm{c}\),任意实数λ,有
1)\(\bm{a}\times\bm{b}=-\bm{b}\times{a}\)(反交规律);
2)\((\lambda \bm{a})\times\bm{b}=\lambda(\bm{a}\times\bm{b})\);
3)\(\bm{a}\times(\bm{b}+\bm{c})=\bm{a}\times\bm{b}+\bm{a}\times\bm{c}\)(左分配律)
\((\bm{b}+\bm{c})\times\bm{a}=\bm{b}\times\bm{a}+\bm{c}\times\bm{a}\)(右分配律).
证明:
1) 由外积定义可知\(\bm{a}\times \bm{b},\bm{b}\times \bm{a}\)模相等,方向相反,故等式成立.
2) \(|(\lambda \bm{a})\times\bm{b}|= |\lambda\bm{a}||\bm{b}|\sin<\lambda\bm{a},\bm{b}>=|\lambda||\bm{a}||\bm{b}|\sin<\bm{a},\bm{b}>=|\lambda||\bm{a}\times\bm{b}| =|\lambda(\bm{a}\times\bm{b})|\)
\(\lambda>0\)时,\(\lambda \bm{a}, \bm{a}\)同向 => \((\lambda \bm{a})\times\bm{b}\)与\(\lambda(\bm{a}\times\bm{b})\)同向;
\(\lambda<0\)时,等式左边与与\((\bm{a}\times\bm{b})\)反向,而右边也与\((\bm{a}\times\bm{b})\)反向 => 左边与右边同向.
\(\lambda=0\)时,等式显然成立.
3)左分配律,
设\(\bm{a}\)方向单位向量\(\bm{a^0}\),将向量\(\bm{b},\bm{c}\)分别分解为\(\bm{a^0}\)方向及其垂直方向的2个分量,设\(\bm{b}=\bm{b_1}+\bm{b_2}\),其中\(\bm{b_1}//\bm{a^0}⊥\bm{b_2}, \bm{c_1}//\bm{a^0}⊥\bm{c_2}\).
\[\begin{aligned}
左边&=(|\bm{a}|\bm{a^0)}\times[(\bm{b_1}+\bm{b_2})+(\bm{c_1}+\bm{c_2})]\\
&=|\bm{a}|[\bm{a^0}\times((\bm{b_1}+\bm{c_1})+(\bm{b_2}+\bm{c_2}))]\\
右边&=|\bm{a}|(\bm{a^0}\times \bm{b_2}+\bm{a^0}\times \bm{c_2})
\end{aligned}
\]
由命题1知,对外积有贡献的是向量的外射影. 因此
\[左边=|\bm{a}|[\bm{a^0}\times(\bm{b_2}+\bm{c_2})]
\]
\(\bm{a^0}⊥\bm{b_2},\bm{c_2}=>\bm{a^0}⊥\bm{d}(\bm{d}=\bm{b_2}+\bm(c_2))\)
根据命题2,\(\bm{a^0}\times \bm{d}\)等价于\(\bm{d}\)绕\(\bm{a^0}\)向右旋转90°得到的向量\(\bm{d'}\).
同理,
\(\bm{a^0}\times \bm{b_2}\)等价于\(\bm{b_2}\)绕\(\bm{a^0}\)向右旋转90°得到的向量\(\bm{b_2'}\);
\(\bm{a^0}\times \bm{c_2}\)等价于\(\bm{c_2}\)绕\(\bm{a^0}\)向右旋转90°得到的向量\(\bm{c_2}\).
因此,
\[\begin{aligned}
左边&=|\bm{a}|\bm{d'}\\
右边&=|\bm{a}|(\bm{b_2'}+\bm{c_2'})
\end{aligned}
\]
旋转前,\(\bm{b_2},\bm{c_2},\bm{d}\)形成三角形,旋转后也一定能形成三角形,因此,
\[\bm{d'}=\bm{b_2'}+\bm{c_2'}
\]
故左边=右边.
右分配律,
\[\begin{aligned}
(\bm{b}+\bm{c})\times \bm{a}&=-\bm{a}\times(\bm{b}+\bm{c})\\
&=-(\bm{a}\times\bm{b}+\bm{a}\times\bm{c})\\
&=\bm{b}\times\bm{a}+\bm{c}\times\bm{a}
\end{aligned}
\]
计算向量的外积
外积的坐标计算
仿射坐标系\([O;\bm{e_1},\bm{e_2},\bm{e_3}]\)下,设\(\bm{a},\bm{b}\)的坐标为\((a_1,a_2,a_3)(b_1,b_2,b_3)\),则
\[\begin{aligned}
\bm{a}\times \bm{b}&=(a_1\bm{e_1}+a_2\bm{e_2}+a_3\bm{e_3})\times (b_1\bm{e_1}+b_2\bm{e_2}+b_3\bm{e_3})\\
&=(a_1b_2-a_2b_1)\bm{e_1}\times \bm{e_2}+(a_3b_1-a_1b_3)\bm{e_3}\times \bm{e_1}+(a_2b_3-a_3b_2)\bm{e_2}\times \bm{e_3}
\end{aligned}
\]
因此,只要知道基向量的外积,就能求出\(\bm{a}\times \bm{b}\).
右手直角标架下,\(\bm{e_1}\times \bm{e_2}=\bm{e_3},\bm{e_2}\times \bm{e_3}=\bm{e_1},\bm{e_3}\times \bm{e_1}=\bm{e_2}\)
因此,
\[\bm{a}\times \bm{b}=(a_2b_3-a_3b_2)\bm{e_1}+(a_3b_1-a_1b_3)\bm{e_2}+(a_1b_2-a_2b_1) \bm{e_3}
\]
外积的坐标表示
定理2 设\(\bm{a},\bm{b}\)在右手直角坐标系中坐标坐标为\((a_1,a_2,a_3)(b_1,b_2,b_3)\),则\(\bm{a}\times \bm{b}\)的坐标为
\[\begin{pmatrix}
\begin{vmatrix}
a_2 & b_2\\
a_3 & b_3
\end{vmatrix},
-\begin{vmatrix}
a_1 & b_1\\
a_3 & b_3
\end{vmatrix},
\begin{vmatrix}
a_1 & b_1\\
a_2 & b_2
\end{vmatrix}
\end{pmatrix}
\]
证明很简单,由上面的坐标计算向量外积即可知. 也可以写成三阶行列式形式:
\[\bm{a}\times \bm{b}=\begin{vmatrix}
\bm{e_1} & a_1 & b_1\\
\bm{e_2} & a_2 & b_2\\
\bm{e_3} & a_3 & b_3
\end{vmatrix}
\]
tips:按第1列展开可得坐标形式.
向量的混合积
定义
定义2 \(\bm{a}\times\bm{b}\cdot \bm{c}\)称为向量\(\bm{a},\bm{b},\bm{c}\)的混合积.
几何意义
混合积\(\bm{a}\times\bm{b}\cdot \bm{c}\)几何意义是什么?
当\(\bm{a},\bm{b}\)不共线时,知外积\(|\bm{a}\times\bm{b}|\)表示\(\bm{a},\bm{b}\)为邻边的平行四边形面积.而\(\bm{a}\times\bm{b}\cdot \bm{c}\)表示以\(\bm{a},\bm{b},\bm{c}\)为棱的平行六面体的体积.
如下图,平行六面体ABCDA'B'C'D'中,
\(S_{ABCD}=|\bm{a}\times\bm{b}|, h=|\bm{c}||\cos \theta| \implies V=S_{ABCD}\cdot h=|\bm{a}\times\bm{b}||\bm{c}||\cos\theta|\)
而θ是向量\(\bm{c},\bm{a}\times\bm{b}\)的夹角
∴\(V=|\bm{a}\times\bm{b}\cdot \bm{c}|\)
当\(\bm{a}\times \bm{b}\cdot \bm{c}>0\)时,θ为锐角,\((\bm{a},\bm{b},\bm{c})\)构成右手系;
当\(\bm{a}\times \bm{b}\cdot \bm{c}=0\)时,θ为直角,\(\bm{a},\bm{b},\bm{c}\)共面;
当\(\bm{a}\times \bm{b}\cdot \bm{c}<0\)时,θ为钝角,\((\bm{a},\bm{b},\bm{c})\)构成左手系.
命题3 3个向量\(\bm{a},\bm{b},\bm{c}\)共面的充要条件:\(\bm{a}\times \bm{b}\cdot c=0\).
证明:由混合积体积意义,即可得证. (共面时,平行六面体体积为0)
常用性质
1)\(\bm{a}\times \bm{b}\cdot \bm{c}=\bm{b}\times \bm{c}\cdot \bm{a}=\bm{c}\times \bm{a}\cdot \bm{b}\);
2)\(\bm{a}\times \bm{b}\cdot c=\bm{a}\cdot \bm{b}\times \bm{c}\).
证明:
1)∵\(|\bm{a}\times \bm{b}\cdot \bm{c}|,|\bm{b}\times \bm{c}\cdot \bm{a}|,|\bm{c}\times \bm{a}\cdot \bm{b}|\)表示以\(\bm{a},\bm{b},\bm{c}\)为棱的平行六面体体积
∴\(|\bm{a}\times \bm{b}\cdot \bm{c}|=|\bm{b}\times \bm{c}\cdot \bm{a}|=|\bm{c}\times \bm{a}\cdot \bm{b}|\)
如果\((\bm{a},\bm{b},\bm{c})\)为右手系,则\((\bm{b},\bm{c},\bm{a}), (\bm{c},\bm{a},\bm{b})\)均为右手系,即\(\bm{a}\times \bm{b}\cdot \bm{c},\bm{b}\times \bm{c}\cdot \bm{a}, \bm{c}\times \bm{a}\cdot \bm{b}\)结果均>=0;
反之若为左手系,结果均<0;
也就是说,三者同号. 故得证.
2)\(\bm{a}\times\bm{b}\cdot\bm{c}=\bm{b}\times\bm{c}\cdot \bm{a}=(\bm{b}\times\bm{c})\cdot \bm{a}=\bm{a}\cdot (\bm{b}\times\bm{c})=\bm{a}\cdot \bm{b}\times\bm{c}\)
tips: 外积优先级比内积更高,否则内积得到的常数与向量进行外积运算没有意义.
计算向量的混合积
混合积的坐标计算
取仿射标架\([O;\bm{e_1},\bm{e_2},\bm{e_3}]\),设\(\bm{a},\bm{b},\bm{c}\)坐标分别为\((a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)\). 则
\[\begin{aligned}
\bm{a}\times\bm{b} \cdot \bm{c} = &(a_1,a_2,a_3)\times (b_1,b_2,b_3)\cdot (c_1,c_2,c_3)\\
= &(a_1\bm{e_1}+a_2\bm{e_2}+a_3\bm{e_3})\times (b_1\bm{e_1}+b_2\bm{e_2}+b_3\bm{e_3})\cdot (c_1\bm{e_1}+c_2\bm{e_2}+c_3\bm{e_3})\\
= &[(a_1b_2-a_2b_1)\bm{e_1}\bm{e_2}+(a_3b_1-a_1b_3)\bm{e_3}\times \bm{e_1}+(a_2b_3-a_3b_2)\bm{e_2}\times \bm{e_3}]\\
\cdot &(c_1\bm{e_1}+c_2\bm{e_2}+c_3\bm{e_3})\\
= &[(a_1b_2-a_2b_1)c_3+(a_3b_1-a_1b_3)c_2+(a_2b_3-a_3b_2)c_1]\bm{e_1}\times \bm{e_2}\cdot \bm{e_3}\\
= &\begin{vmatrix}
a_1 & b_1 & c_1\\
a_2 & b_2 & c_2\\
a_3 & b_3 & c_3
\end{vmatrix}\bm{e_1}\times \bm{e_2} \cdot \bm{e_3}
\end{aligned}
\]
∵\(\bm{e_1},\bm{e_2},\bm{e_3}\)不共面
∴\(\bm{e_1}\times \bm{e_2} \cdot \bm{e_3}\neq 0\).
定理3 如果\([O;\bm{e_1},\bm{e_2},\bm{e_3}]\)为右手直角标架,向量\(\bm{a},\bm{b},\bm{c}\)坐标分别为\((a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)\),则
\[\bm{a}\times\bm{b} \cdot \bm{c}=\begin{vmatrix}
a_1 & b_1 & c_1\\
a_2 & b_2 & c_2\\
a_3 & b_3 & c_3
\end{vmatrix}
\]
证明:∵\([O;\bm{e_1},\bm{e_2},\bm{e_3}]\)为右手直角标架
∴\(\bm{e_1}\times\bm{e_2}=\bm{e_3}\)
∴\(\bm{e_1}\times \bm{e_2} \cdot \bm{e_3}=\bm{e_3}\cdot \bm{e_3}=1\)
∴\(\bm{a}\times\bm{b} \cdot \bm{c}=\begin{vmatrix}
a_1 & b_1 & c_1\\
a_2 & b_2 & c_2\\
a_3 & b_3 & c_3
\end{vmatrix}\bm{e_1}\times \bm{e_2} \cdot \bm{e_3}=\begin{vmatrix}
a_1 & b_1 & c_1\\
a_2 & b_2 & c_2\\
a_3 & b_3 & c_3
\end{vmatrix}\)
三向量(或四点)共面条件
三向量共面
定理4 设\(\bm{a},\bm{b},\bm{c}\)的仿射坐标\((a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)\),则\(\bm{a},\bm{b},\bm{c}\)共面的充要条件:
\[\begin{vmatrix}
a_1 & b_1 & c_1\\
a_2 & b_2 & c_2\\
a_3 & b_3 & c_3
\end{vmatrix}=0
\]
证明:
由命题3知,3向量共面充要条件:\(\bm{a}\times\bm{b}\cdot \bm{c}=0\)
由上面混合积的坐标计算知,
\[\bm{a}\times\bm{b}\cdot \bm{c}=\begin{vmatrix}
a_1 & b_1 & c_1\\
a_2 & b_2 & c_2\\
a_3 & b_3 & c_3
\end{vmatrix}\bm{e_1}\times \bm{e_2} \cdot \bm{e_3}
\]
∵\(\bm{e_1},\bm{e_2},\bm{e_3}\)不共面
∴\(\bm{e_1}\times \bm{e_2}\cdot \bm{e_3}\neq 0\)
∴3向量共面充要条件是\(\begin{vmatrix}
a_1 & b_1 & c_1\\
a_2 & b_2 & c_2\\
a_3 & b_3 & c_3
\end{vmatrix}=0\)
四点共面
推论3 设4个点A,B,C,D的仿射坐标\((x_i,y_i,z_i),i=1,2,3,4\). 则A,B,C,D共面的充要条件:
\[\begin{vmatrix}
x_1 & x_2 & x_3 & x_4\\
y_1 & y_2 & y_3 & y_4\\
z_1 & z_2 & z_3 & z_4\\
1 & 1 & 1 & 1
\end{vmatrix}=0
\]
证明:A,B,C,D共面,即\(\overrightarrow{DA},\overrightarrow{DB},\overrightarrow{DC}\)共面
由三向量共面定理知,充要条件为:
\[\begin{vmatrix}
x_1-x_4 & x_2-x_4 & x_3-x_4\\
y_1-y_4 & y_2-y_4 & y_3-y_4\\
z_1-z_4 & z_2-z_4 & z_3-z_4
\end{vmatrix}=0
\]
等式等价于(按最后一行展开)
\[\begin{vmatrix}
x_1-x_4 & x_2-x_4 & x_3-x_4 & x_4\\
y_1-y_4 & y_2-y_4 & y_3-y_4 & y_4\\
z_1-z_4 & z_2-z_4 & z_3-z_4 & z_4\\
0 & 0 & 0 & 1
\end{vmatrix}=0
\]
将行列式前3列都加上最后一列,值不变:
\[\begin{vmatrix}
x_1-x_4 & x_2-x_4 & x_3-x_4 & x_4\\
y_1-y_4 & y_2-y_4 & y_3-y_4 & y_4\\
z_1-z_4 & z_2-z_4 & z_3-z_4 & z_4\\
0 & 0 & 0 & 1
\end{vmatrix}=
\begin{vmatrix}
x_1 & x_2 & x_3 & x_4\\
y_1 & y_2 & y_3 & y_4\\
z_1 & z_2 & z_3 & z_4\\
1 & 1 & 1 & 1\\
\end{vmatrix}=0
\]
参考
[1]丘维声.解析几何[M].北京大学出版社,2017.